From the Leader in Cartridge Heater Technology...
...A Unique Split-Sheath Design
That Reduces the Cost of Process Heating
Watt-Flex®

Maximized Heat Transfer

- The unique split-sheath design of the Watt-Flex® Cartridge Heater allows the independent, bilateral expansion of each half of the heater outward against the walls of the surrounding bore. Maximized metal-to-metal contact results in greatly improved heat transfer under normal fit conditions of .005” to .007”. The thermal expansion of conventional cartridge heaters limits heater contact to only one side of the bore (Figure 1). The unique split-sheath expansion of Watt-Flex heaters assures superior heat transfer, more uniform process heat, greater efficiency, and reduced consumption of electricity.

Use in Oversized Bores

- The fit of a cartridge heater is measured as the difference between the inside diameter (I.D.) of the bore and the outside diameter (O.D.) of the heater. The suggested fit for a Watt-Flex Cartridge Heater is .007” greater than the standard diameters shown on Page 4.

For example, the ideal bore diameter for a 1/2” diameter Watt-Flex heater would be 0.502” to 0.505”. At the maximum tolerance dimension of the heater and the minimum bore diameter, the heater would have 0.005” fit, allowing ease of insertion and removal. Generally, smaller diameter heaters benefit from a bit tighter fit and fit can be slightly loosened for larger diameters.

The unique expanding action of Watt-Flex heaters eliminates the need for tight fits. This makes Watt-Flex heaters ideal for use in oversized bores. Superior bilateral expansion permits the use of Watt-Flex heaters in bores where conventional heaters could not be used effectively.

Ease of Removability

- Dalton Electric will replace, free of charge, any Watt-Flex Cartridge Heater that cannot be withdrawn from the bore.

Dalton Electric’s standard product warranty covers the removal of Watt-Flex heaters from bores, providing the bore fit is a minimum of .005” and there is no bore contamination to cause seizure. This warranty is possible because the split-sheath design of Watt-Flex heaters eliminates warping, the primary cause of bore seizure in heating applications.

As shown in Figure 2, temperature differentials exist from one side of conventional cylindrically sheathed cartridge heaters to the other. These differentials occur because only one side of the heater comes in contact with the bore. The resulting deflection within a close-fitting bore often makes the heater bind during removal. With the Watt-Flex heater’s split-sheath design, each half of the heater contracts independently when de-energized to provide ease of removability.
The Watt-Flex Cartridge Heater is essentially a tubular heater bent back on itself and swaged into a cylindrical format. Unlike conventional heaters, Watt-Flex heaters have no ceramic core which can crack during swaging, therefore, they can be compacted to a much greater density. This process increases both heat transfer ability and insulative value of the dielectric.

The greater insulation value accommodates significantly higher watt-densities. In fact, Watt-Flex heaters produce up to 50% higher warrantable watt-densities than conventional heaters and can operate at much higher temperatures.

The life of a cartridge heater is directly related to its internal operating temperature. Denser and more uniform compaction of the dielectric provides greater heat transfer to the Watt-Flex sheath. This, combined with more efficient heat transfer to the surrounding metal through intimate contact with the wall of the bore, permits the Watt-Flex resistance coil to run substantially cooler than conventional cartridge heater coils. The result is up to five times longer life, decreased downtime, and lower operating costs.

Unlike conventional cartridge heaters, Watt-Flex heaters have a continuous heating coil for a more uniform temperature profile. Continuous coil construction eliminates the cold spots which can occur at core junctions in ceramic core heaters. (See Figure 3.) With Watt-Flex heaters there are no independent sections to burn out. Therefore, Watt-Flex heaters are either totally on or totally off. Figure 4 shows the superior temperature profile along the length of a torpedo probe heated by a Watt-Flex heater. Uniform sheath temperature is vital when molding heat-sensitive plastics where the temperature window between gate freeze-off and material degradation is very narrow.

By varying the watt-density, the temperature profile may be custom-matched to specific requirements. For example, certain applications, such as those requiring temperatures higher at the tip of a molding probe than along the sheath, can be accomplished with Watt-Flex heaters but not with conventional cartridge heaters.
Watt-Flex heaters can be manufactured with a groove along the exterior of the cartridge to accommodate a needle-type thermocouple (Figure 6) for more accurate temperature sensing and control. Unlike cartridge heaters with internal thermocouples which measure the internal coil temperature, Watt-Flex heaters measure the temperature at the point of heat transfer from the heater to the host metal.

Another feature of this design is that the temperature can be monitored at any point along the heater, unlike internal thermocouples with fixed positions. And, the Watt-Flex design allows for independent replacement of the heater or the thermocouple, without having to discard an operational component as in conventional designs.

The maximum lengths for grooved heaters are 15” for 1/4” and 3/8” diameter heaters and 7” for 1/2” diameter heaters. Longer heaters, 1/2” diameter or larger, can be center grooved between the legs to a depth of 6”. Thermocouples are Type J with a lead length of 48”. A 0.040” needle diameter is used for 1/4” diameter heaters and all center grooves. A 0.062” needle diameter is used for side grooved 3/8” and 1/2” diameter heaters.

<table>
<thead>
<tr>
<th>AVAILABLE DIAMETERS</th>
<th>NOMINAL DIAMETERS</th>
<th>STANDARD COLD SECTION AT TERMINAL END</th>
<th>MINIMUM - MAXIMUM LENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4”</td>
<td>0.245”</td>
<td>1/4”</td>
<td>1 1/4” - 22”</td>
</tr>
<tr>
<td>5/32”</td>
<td>0.370”</td>
<td>5/32”</td>
<td>1 1/2” - 36”</td>
</tr>
<tr>
<td>5/16”</td>
<td>0.495”</td>
<td>5/16”</td>
<td>2”</td>
</tr>
<tr>
<td>3/16”</td>
<td>0.620”</td>
<td>3/16”</td>
<td>2 1/2” - 70”</td>
</tr>
<tr>
<td>1/8”</td>
<td>0.683”</td>
<td>1/8”</td>
<td>3 1/2” - 64”</td>
</tr>
<tr>
<td>5/32”</td>
<td>0.745”</td>
<td>1/8”</td>
<td>3 1/2” - 90”</td>
</tr>
<tr>
<td>1/4”</td>
<td>0.9295”</td>
<td>1”</td>
<td>8” - 60”</td>
</tr>
<tr>
<td>8.0 mm</td>
<td>7.875 mm</td>
<td>8.000 mm</td>
<td>38 mm - 660 mm</td>
</tr>
<tr>
<td>10.0 mm</td>
<td>9.875 mm</td>
<td>9.500 mm</td>
<td>38 mm - 915 mm</td>
</tr>
<tr>
<td>12.0 mm</td>
<td>11.875 mm</td>
<td>15.875 mm</td>
<td>50 mm - 1140 mm</td>
</tr>
<tr>
<td>12.5 mm</td>
<td>12.375 mm</td>
<td>15.875 mm</td>
<td>50 mm - 1140 mm</td>
</tr>
<tr>
<td>15.0 mm</td>
<td>14.875 mm</td>
<td>15.875 mm</td>
<td>65 mm - 1250 mm</td>
</tr>
<tr>
<td>16.0 mm</td>
<td>15.875 mm</td>
<td>15.875 mm</td>
<td>65 mm - 1775 mm</td>
</tr>
<tr>
<td>20.0 mm</td>
<td>19.875 mm</td>
<td>15.875 mm</td>
<td>100 mm - 1525 mm</td>
</tr>
</tbody>
</table>

1) Tolerance: ± .002” (1/4”-3/4”); ± .0025” (1”) 2) Tolerance: ± 3% with 3/32” minimum ± 2% above 20” (500 mm)

Hot Tip Option

Watt-Flex heaters can be constructed to generate full heat at the tip (Figure 5). When selected for injection molding gate probes, the hot tip feature minimizes undesirable gate freeze-off.

Figure 5: Watt-Flex Hot Tip Heater vs. Conventional Heater

Exclusive External Thermocouple Option

Watt-Flex heaters can be manufactured with a groove along the exterior of the cartridge to accommodate a needle-type thermocouple (Figure 6) for more accurate temperature sensing and control. Unlike cartridge heaters with internal thermocouples which measure the internal coil temperature, Watt-Flex heaters measure the temperature at the point of heat transfer from the heater to the host metal.

Another feature of this design is that the temperature can be monitored at any point along the heater, unlike internal thermocouples with fixed positions. And, the Watt-Flex design allows for independent replacement of the heater or the thermocouple, without having to discard an operational component as in conventional designs.

The maximum lengths for grooved heaters are 15” for 1/4” and 3/8” diameter heaters and 7” for 1/2” diameter heaters. Longer heaters, 1/2” diameter or larger, can be center grooved between the legs to a depth of 6”. Thermocouples are Type J with a lead length of 48”. A 0.040” needle diameter is used for 1/4” diameter heaters and all center grooves. A 0.062” needle diameter is used for side grooved 3/8” and 1/2” diameter heaters.

Figure 6: Watt-Flex Heater with Optional Thermocouple
Heater Accessories

- Watt-Flex heaters are available with a variety of options including abrasion resistance, moisture resistance, mounting variations, high-temperature modifications, and lead modifications. The illustrations below show a sampling of the accessories available.

Abrasions Protection
- Stainless Steel Braid
- Stainless Steel Flexible Hose
- Straight or Right Angle Headers

Contaminant Protection
- RTV Potting
- Ceramic Potting

Mounting Variations
- Stainless Steel Flange
- Puller End Plug
- Mounting Bracket
- NPT Fitting

High-Temperature Modifications
- High-Temperature Leads
- Extra Cold Section at Terminal End
- Ceramic Beads

Lead Modifications
- Extra Length Leads
- Threaded Post Terminals
- Fiberglass or Silicon Rubber Slewing
- Quick Disconnect
- Clip Support
- Integral Ground Wire

Ordering Information

- When ordering Watt-Flex heaters, please specify:

 - Quantity
 - Standard or grooved sheath
 - Sheath diameter
 - Sheath length
 - Wattage
 - Voltage
 - Hot or cool tip
 - Lead wire length
 - Any accessories
 - Preassigned part number (if available)

 - Severe ambient conditions (such as dripping oil)
 - Manufacturing process and set point temperature
 - Bore inside diameter (if heater is to be used in bore)
 - Frequency of cycling (if heater will be regulated by controller)
 - Severe lead wire flexing (if applicable)

Dalton reserves the right to ship 90-110% of quantity ordered (for quantities of 10 or less, ±1 heater).
Engineering Data and Design Considerations

Heating Metal Parts

The following equations will assist you in determining the heater capacity needed to produce a required level of heat. (Refer to “Physical Properties of Materials” charts below for values needed for calculations.)

Calculation of Required Wattage

A) WATTS FOR MATERIAL HEAT-UP = Weight of Material (lbs) x Specific Heat x Temp. Rise (°F) x 3.412 x Heat-Up Time (hours)

B) WATTS HEAT LOSS DURING HEAT-UP = Watt Loss per sq. in. ** x Area (sq. in.)

C) TOTAL WATTS REQUIRED = (A + B) x 1.2

Consult graph for applicable wattage loss rates.

** Consult graph for applicable wattage loss rates.

Physical Properties of Materials

The following information is provided to assist you in the selection of Watt-Flex heaters and the design of new heating equipment in which they will be used. Dalton engineers are available for consultation on any heating application. Please call if you have questions or would like additional assistance.

Heating Liquids

Consideration should be given to the following factors when heating liquids with Watt-Flex Cartridge Heaters:

- Locate heater wells in an unrestricted space in the main body of the liquid.
- The heated section of the well should be covered by liquid at all times.
- In metal-melting applications, explosions can result if pressure is not vented during the melting phase of heat-up.
- Certain watt-density limits exist in immersion applications. Please consult the factory for additional assistance.
Watt-Flex® Replaceable Immersion Heaters

- Stainless steel sheath accommodates standard diameter flanged Watt-Flex Cartridge Heaters.
- Easily replaced without draining the tank or vat. Watt-Flex heater contracts when de-energized for easy removal.
- Clean and safe. Heater never comes in contact with contents of tank.

Construction

- Stainless steel sheath with a welded end cap and NPT fitting which screws into and becomes a permanent part of the tank to be heated.

Flanged Watt-Flex heater is secured to NPT fitting with two screws. To replace the heater, simply remove the screws and slide the de-energized heater out.

IMMERSION HEATER

<table>
<thead>
<tr>
<th>Sheath O.D.</th>
<th>NPT Fitting</th>
<th>Diameter</th>
<th>Length (Min. - Max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅜”</td>
<td>⅜”</td>
<td>12.5 mm</td>
<td>5” - 45”</td>
</tr>
<tr>
<td>⅝”</td>
<td>1”</td>
<td>¾”</td>
<td>8” - 72”</td>
</tr>
</tbody>
</table>

CARTRIDGE HEATER

NOTE: Both Watt-Flex Immersion Heaters and Cartridge Heaters are manufactured to customer specified lengths.
Diff-Therm™ Platen Heaters by Dalton

Diff-Therm™ Platen Heaters are high-quality, tubular heating elements swaged under 50 tons per square inch of pressure into grey iron castings (platens and rings). Superior design and meticulous construction make Diff-Therm heaters the industry standard for long life, uniformly distributed process heat, and efficient power generation.

Over 100 heater combinations of electrical ratings and casting sizes are available for 2" through 48" diffusion pumps. Diff-Therm heaters are also available in custom casting dimensions and electrical ratings for use on obsolete and foreign-made pumps.

The proven industry standard, Diff-Therm heaters offer easy heater selection, easy installation, superior process heating, and longer heater life. Standard heaters are shipped within 5 days of the receipt of an order.

Illustration 1 below shows how Diff-Therm heaters are designed to provide superior performance over other bolt-on diffusion pump heaters. Dalton Electric manufactures tubular heating elements using only high-purity magnesium oxide, nickel chrome resistance wire, and stainless steel terminals for internal components. Special filling methods and equipment compact the magnesium oxide inside and around the resistor helix to extreme density. Swaging further compacts the magnesium oxide virtually to maximum density, yielding high dielectric strength and efficient internal heat conduction. Swaging the heating elements into undercut grooves in the Diff-Therm casting locks the elements into intimate contact with the casting, and provides uniform heat conduction along the entire length of the grooves.

The surface of the Diff-Therm casting which contacts the diffusion pump boiler plate is machined to a flat, smooth finish. This process assures efficient and uniform heat conduction into the boiler plate for steady vaporization of the pump fluid (Illustration 2).

Warranty

Dalton Electric warrants its products only against defects in materials and workmanship. Dalton Electric’s liability and a customer’s exclusive remedy under this or any warranty extend for the earlier of two thousand hours of operation, or one year from the date of Dalton’s shipment, provided the product or products are properly stored, installed, maintained, and operated. Dalton Electric’s liability is exclusively limited to repayment of the purchase price, repair or replacement, at Dalton Electric’s option, during said period, upon proof satisfactory to Dalton and upon customer’s returning and prepaying all charges on such products to factory or warehouse designated by Dalton Electric. THIS WARRANTY IS MADE EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO QUALITY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.