Dalton

Watt-Flex® Cartridge Heaters

From the Leader in Cartridge Heater Technology...
...A Unique Split-Sheath Design
That Reduces the Cost of Process Heating

Watt-Flex®

Maximized Heat Transfer

The Revolutionary Split-Sheath Cartridge Heater (Patented in the United States and Canada)

The unique split-sheath design of the Watt-Flex® Cartridge Heater allows the independent, bilateral expansion of each half of the heater outward against the walls of the surrounding bore. Maximized metal-to-metal contact results in greatly improved heat transfer under normal fit conditions of .005"to .007". The thermal expansion of conventional cartridge heaters limits heater contact to only one side of the bore (Figure 1). The unique split-sheath expansion of Watt-Flex heaters assures superior heat transfer, more uniform process heat, greater efficiency, and reduced consumption of electricity.

Figure 1: Watt-Flex Expansion Comparison

ENERGIZED CONVENTIONAL CARTRIDG BHBATER

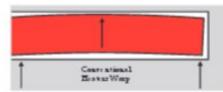
Conventional cartridge heaters, limited to ordinary thermal exposition, carnot compensate for oversized boxes.

ENERGIZED WATT-FLEX HEATER

The unique black alexpansion of an energized Watt-Flex leaker produces superior metal-to-metal-contact with the summuching bone, these by maximizing leat transfer.

DE-ENERGIZED WATT-FLEX HEATER

De-energized Watt-Flex heater contract for easy insertion and slide-out removal from bore.


Use in Oversized Bores

The fit of a cartridge heater is measured as the difference between the inside diameter (I.D.) of the bore and the outside diameter (O.D.) of the heater. The suggested fit for a Watt-Flex Cartridge Heater is .007" greater than the standard diameters shown on Page 4

For example, the ideal bore diameter for a 1/2" diameter Watt-Flex heater would be 0.502" to 0.505". At the maximum tolerance dimension of the heater and the minimum bore diameter, the heater would have 0.005" fit, allowing ease of insertion and removal. Generally, smaller diameter heaters benefit from a bit tighter fit and fit can be slightly loosened for larger diameters.

The unique expanding action of Watt-Rex heaters eliminates the need for tight fits. This makes Watt-Rex heaters ideal for use in oversized bores. Superior bilateral expansion permits the use of Watt-Flex heaters in bores where conventional heaters could not be used effectively.

Figure 2: Thermal Expansion Comparison

Ease of Removability

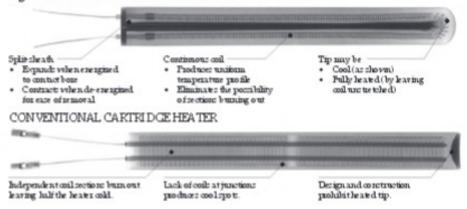
Dalton Electric will replace, free of charge, any Watt-Flex Cartridge Heater that cannot be withdrawn from the bore.

Dalton Electric's standard product warranty covers the removal of Watt-Flex heaters from bores, providing the bore fit is a minimum of .005" and there is no bore contamination to cause seizure. This warranty is possible because the split-sheath design of Watt-Flex heaters eliminates warping, the primary cause of bore seizure in heating applications.

As shown in Figure 2, temperature differentials exist from one side of conventional cylindrically sheathed cartridge heaters to the other. These differentials occur because only one side of the heater comes in contact with the bore. The resulting deflection within a close-fitting bore often makes the heater bind during removal. With the Watt-Flex heater's split-sheath design, each half of the heater contracts independently when de-energized to provide ease of removability.

Higher Watt Densities and Temperatures

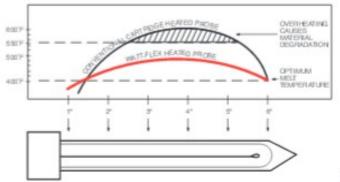
Longer Life


Uniform Temperature Profile

The Watt-Flex Cartridge Heater is essentially a tubular heater bent back on itself and swaged into a cylindrical format. Unlike conventional heaters, Watt-Flex heaters have no ceramic core which can crack during swaging, therefore, they can be compacted to a much greater density. This process increases both heat transfer ability and insulative value of the dielectric.

The greater insulation value accommodates significantly higher wattdensities. In fact, Watt-Rex heaters produce up to 50% higher warrantable watt-densities than conventional heaters and can operate at much higher temperatures.

The life of a cartridge heater is directly related to its internal operating temperature. Denser and more uniform compaction of the dielectric provides greater heat transfer to the Watt-Flex sheath. This, combined with more efficient heat transfer to the surrounding metal through intimate contact with the wall of the bore, permits the Watt-Flex resistance coil to run substantially cooler than conventional cartridge heater coils. The result is up to five times longer life, decreased downtime, and lower operating costs.


Figure 3: Watt-Flex® SPLIT-SHEATH CARTRIDGE HEATER

Unlike conventional cartridge heaters, Watt-Flex heaters have a continuous heating coil for a more uniform temperature profile. Continuous coil construction eliminates the cold spots which can occur at core junctions in ceramic core heaters. (See Figure 3.) With Watt-Flex heaters there are no independent sections to burn out. Therefore, Watt-Flex heaters are either totally on or totally off. Figure 4 shows the superior temperature profile along the length of a torpedo probe heated by a Watt-Flex heater. Uniform sheath temperature is vital when molding heat-sensitive plastics where the temperature window between gate freeze-off and material degradation is very narrow.

By varying the watt-density, the temperature profile may be custommatched to specific requirements. For example, certain applications, such as those requiring temperatures higher at the tip of a molding probe than along the sheath, can be accomplished with Watt-Flex heaters but not with conventional cartridge heaters.

Figure & Superior Temperature Distribution Based on Actual In-Mold Tests

Standard Watt-Flex Heater Dimensions

AVAILABLE DIAMETERS	NOMINAL DIAMETERS	STAND ARD COLD SECTION AT TERMINALEND	MINIMUM-MAXIMUM: LENGTHS
%" %" %" "%" 1" 8.0 mm 10.0 mm 12.0 mm 12.5 mm 15.0 mm 20.0 mm	0 245" 0 370" 0 495" 0 620" 0 683" 0 745" 0 9925" 7 875 mm 11 875 mm 12 375 mm 14875 mm 15875 mm	%" %" %" %" %" %" %" 1" 8.000 mm 9.500 mm 15875 mm 15875 mm 15875 mm 15875 mm 15875 mm	1 \(\frac{4}{2} \)" - 22" 1 \(\frac{4}{2} \)" - 36" 2" - 50" 2 \(\frac{4}{2} \)" - 64" 3 \(\frac{4}{2} \)" - 60" 8" - 60" 38 \(\text{nm} \) - 660 \(\text{nm} \) 38 \(\text{nm} \) - 915 \(\text{nm} \) 50 \(\text{nm} \) - 1140 \(\text{nm} \) 50 \(\text{nm} \) - 1140 \(\text{nm} \) 65 \(\text{nm} \) - 1250 \(\text{nm} \) 65 \(\text{nm} \) - 1755 \(\text{nm} \) 100 \(\text{nm} \) - 1525 \(\text{nm} \)

1)Tolexanor: \$\frac{1}{2}.002" (\frac{1}{2}\frac{1}{4}" - \frac{3}{2}\frac{1}{4}"); \pm 2.0025" (1") \$\frac{1}{2}.05\text{mm} (0\text{mm} - 20\text{mm})

2)Tolerance: ±3% vsith ³/32"minimum ±2% above 20"(500 mm)

Hot Tip Option

Watt-Flex heaters can be constructed to generate full heat at the tip (Figure 5). When selected for injection molding gate probes, the hot tip feature minimizes undesirable gate freeze-off.

Figure 5: Watt-Flex Hot Tip Heater vs. Conventional Heater

Coor entional cartidge heater construction prohibits a heated tip.

Only Watt-Flex heaters are designed with a continuous coil that delir ers full heat to the tip.

Exclusive External Thermocouple Option

• Watt-Flex heaters can be manufactured with a groove along the exterior of the cartridge to accommodate a needle-type thermocouple (Figure 6) for more accurate temperature sensing and control. Unlike cartridge heaters with internal thermocouples which measure the internal coil temperature, Watt-Flex heaters measure the temperature at the point of heat transfer from the heater to the host metal.

Another feature of this design is that the temperature can be monitored at any point along the heater, unlike internal thermocouples with fixed positions. And, the Watt-Flex design allows for independent replacement of positions. And, the wateriex design allows for independent replacement of the heater or the thermocouple, without having to discard an operational component as in conventional designs.

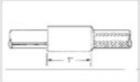
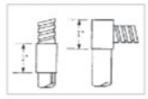
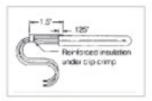
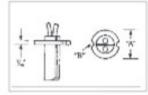

The maximum lengths for grooved heaters are 15" for 1/4" and 3/8" diameter heaters and 7" for 1/2" diameter heaters. Longer heaters, 1/2" diameter or larger, can be center grooved between the legs to a depth of 6". Thermocouples are Type J with a lead length of 48". A 0.040" needle diameter is used for 1/4" diameter heaters and all center grooves. A 0.062" needle diameter is used for side grooved 3/8" and 1/2" diameter heaters.

Figure 6: Watt-Flex Heater with Optional Thermocouple

Heater Accessories


• Watt-Flex heaters are available with a variety of options including abrasion resistance, moisture resistance, mounting variations, high-temperature modifications, and lead modifications. The illustrations below show a sampling of the accessories available.


STRAKSHT HEADER WITH STAINLESS STEEL ERAID


THREADED FOST TERMINALS

STE AIGHT OR RESHT ANGLE HEADER WITH STAIRLESS STEEL FLEXIBLE HOSE

STAINLESS STEEL CLIP SUPPORT USED AS AN ANTIFLEX DEVICE— 90' ANGLE AVAILABLE

STAINLESS STEEL MIDUNTING FLANGE

HE ADER	Watt-Rex	HEADER	HOSE
TYPE	O.D.	O.D.	O.D.
Straight or Right Angle	7 4" 3 0" 3 0" 3 0" 3 4" 1"	3.2" 3.2" 3.4" 7.0" 13.0"	11 20" 11 20" 1 2" 1 2" 1 2"

OE D.	Watt-Flex O.D.	"A"	"B" MOUNTING			
R R To To To To	24" 25" 25" 24" 1"	1" 1" 1" 1" 1,2"	080"R on 1"BC 080"R on 1"BC 080"R on 1"BC 080"R on 1"BC 160"D on134"BC 201"D on132"BC			

- *W"Diameter Right Angle Header with High Temperature Leads has Y2" Hose O.D.
- The following accessories are available on Watt-Flex heaters. Please consult factory for special accessories or designs.

Abrasion Protection

- · Stainless Steel Braid
- Stainless Steel Flexible Hose
- · Straightor Right Angle Headers

Contaminant Protection

- . RTV Potting
- Ceramic Potting

Mounting Variations

- · Stainless Steel Flange
- · Puller End Plug
- Mounting Bracket
- · NPT Fitting

High-Temperature Modifications

- · High-Temperature Leads
- Extra Cold Section at Terminal End
- Ceramic Beads

Lead Modifications

- Extra Length Leads
- Threaded Post Terminals
- Fiberglass or Silicon Rubber Sleeving
- Quick Disconnect
- Clip Support
- Integral Ground Wire

Ordering Information

When ordering Watt-Flex heaters, please specify:

- Quantity
- · Standard or grooved sheath
- Sheath diameter
- Sheath length
- · Wattage
- Voltage
- Hot or cool tip
- Lead wire length
- Any accessories
- Preassigned part number (if available)

- Severe ambient conditions (such as dripping oil)
- Manufacturing process and set point temperature
- Bore inside diameter (if heater is to be used in bore)
- Frequency of cycling (if heater will be regulated by controller)
- Severe lead wire flexing (if applicable)

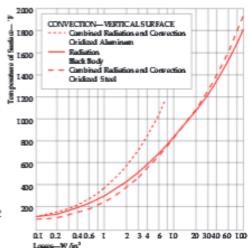
Dalton reserves the right to ship 90-110% of quantity ordered (for quantities of 10 or less, ±1 heater).

Engineering Data and Design Considerations

Heating Metal Parts

Physical Properties of Materials

The following information is provided to assist you in the selection of Watt-Flex heaters and the design of new heating equipment in which they will be used. Dalton engineers are available for consultation on any heating application. Please call if you have questions or would like additional assistance.


The following equations will assist you in determining the heater capacity needed to produce a required level of heat (Refer to "Physical Properties of Materials" charts below for values needed for calculations.)

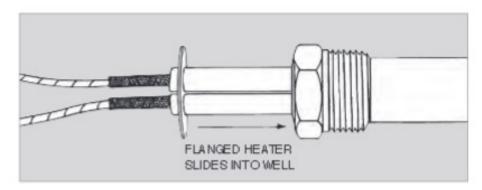
Calculation of Required Wattage

- A) WATTS FOR MATERIAL HEAT-UP =
 Weight of Material (bs) ×
 Specific Heat × Temp. Rise (F)

 3412 × Heat-Up Time (hours)
- E) WATTS HEAT LOSS DURING HEAT-UP= Watt Loss per sq. in. * x Area (sq. in.)
- C) TOTAL WATTS REQUIRED = (A + B) X 12 (20% safety factor for contingencies)
- " Consult graph for applicable wattage loss rates.

WATTAGE LOSS RATES

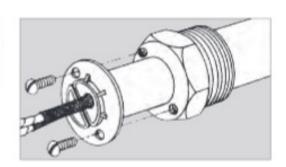
Substance	Specific Heat	Heatof Parion	Lowest Melting Point	Descrity		Thermal Conductivity	Thermal Equation
	Bts./Ib T	Bru/Ib	"F	Ib/π̂.	Ib/in	Btu/lu/ft/ F/ft	inches per inch per T× 10~
Abunium 1100 Abunium 2024 Abunium 3003 Animony	24 24 24 002	10 1€ 1€ 0	1190 935 1190 1166	10 173 170 425	.098 .100 .099 .245	128 112 112 109	13.1 129 129 47 - 6.0
Brass (70% Cn. 30% Zn.)	.10	-	1700±	525	301	36	111
Carbon Copper Ghz	20± .10 20	91	6700 1981 2200±	530 16	.030 318 .096	15.8 224 .£5	3-24 92 5
Graphite Incoloy 300 Incore 1 600 Inwax	20 12 11 13	:	2475 2470 2400	130 301 325 306	075 290 304 294	.10± 81 9.1 61	79 74 06
Inon, cast Inon, vuo ught Lead, solid Lead, melted	.13 .12 .031 .04	10	2300± 2300± 621	420 420 710 665	260 278 411 385	36 30 20	65 65 163
Mignesium Morel #00 Nickel 200 Nickuome (305 Ni, 205 Cr)	232 11 11 11	140 135	1202 2370 2615 2550	109 2701 2704 2724	.063 319 321 303	91 14 39 87	14 77 74 73
Solder (50% Pb, 50% Sm)	.01	17	115	580	336	26	13.1
Steel, mild carbon Steel, stainless 304 Steel, stainless 430	12 11 11	:	2770± 2770 2670	490 400 475	284 282 275	36 8.8 12.5	67 9.6 60
Tin, solid Tin, melted Type metal (27% Pb, 17% Sb)	.056 .061 .040	25 15	±50 500	437 437 670	263 253 388	36 18	13 - -
Zine	.095	51	787	4Đ	258	Ø	94-22

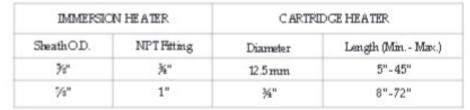

Heating Liquids

- Consideration should be given to the following factors when heating liquids with Watt-Flex Cartridge Heaters:
- Locate heater wells in an unrestricted space in the main body of the liquid.
- The heated section of the well should be covered by liquid at all times.
- In metal-melting applications, explosions can result if pressure is not vented during the melting phase of heat-up.
- Certain watt-density limits exist in immersion applications. Please consult the factory for additional assistance.

Watt-Flex®

Replaceable Immersion Heaters


- Stainless steel sheath accommodates standard diameter flanged Watt-Flex Cartridge Heaters.
- Easily replaced without draining the tank or vat. Watt-Flex heater contracts when de-energized for easy removal.
- Qean and safe. Heater never comes in contact with contents of tank.



Construction

Stainless steel sheath with a welded end cap and NPT fitting which screws into and becomes a permanent part of the tank to be heated.

Flanged Watt-Flex heater is secured to NPT fitting with two screws. To replace the heater, simply remove the screws and slide the de-energized heater out.

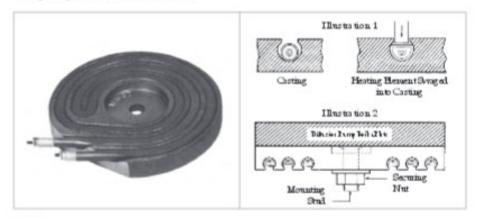
NOTE: Both Watt-Flex Immersion Heaters and Cartridge Heaters are manufactured to customer specified lengths.

Diff-Therm™ Platen Heaters by Dalton

Diff-Therm** Platen Heaters are high-quality, tubular heating elements swaged under 50 tons per square inch of pressure into grey iron castings (platens and rings). Superior design and meticulous construction make Diff-Therm heaters the industry standard for long life, uniformly distributed process heat, and efficient power generation.

Over 100 heater combinations of electrical ratings and casting sizes are available for 2" through 48" diffusion pumps. Diff-Therm heaters are also available in custom casting dimensions and electrical ratings for use on obsolete

and foreign-made pumps.


The proven industry standard, Diff-Therm heaters offer easy heater selection, easy installation, superior process heating, and longer heater life. Standard

heaters are shipped within 5 days of the receipt of an order.

Illustration 1 below shows how Diff-Therm heaters are designed to provide superior performance over other bolt-on diffusion pump heaters. Dalton Electric manufactures tubular heating elements using only high-purity magnesium oxide, nickel chrome resistance wire, and stainless steel terminals for internal components. Special filling methods and equipment compact the magnesium oxide inside and around the resistor helix to extreme density. Swaging further compacts the magnesium oxide virtually to maximum density, yielding high dielectric strength and efficient internal heat conduction. Swaging the heating elements into undercut grooves in the Diff-Therm casting locks the elements into intimate contact with the casting, and provides uniform heat conduction along the entire length of the grooves.

The surface of the Diff-Therm casting which contacts the diffusion pump boiler plate is machined to a flat, smooth finish. This process assures efficient and uniform heat conduction into the boiler plate for steady vaporization of

the pump fluid (Illustration 2).

Warranty

Dalton Electric warrants its products only against defects in materials and workmanship. Dalton Electric's liability and a customer's exclusive remedy under this or any warranty extend for the earlier of two thousand hours of operation, or one year from the date of Dalton's shipment, provided the product or products are properly stored, installed, maintained, and operated. Dalton Electric's liability is exclusively limited to repayment of the purchase price, repair or replacement, at Dalton Electric's option, during said period, upon proof satisfactory to Dalton and upon customer's returning and prepaying all charges on such products to factory or warehouse designated by Dalton Electric. THIS WARRANTY IS MADE EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO QUALITY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

W. H. Cooke & Co., Inc. Supplier of industrial controls, heaters, and sensors since 1963

sales@whcooke.com

717-630-2222

AM A10 Printed in USA